首页/技术分享

Autodesk AI 技术在工程建设行业的探索应用

发布于:2024-06-20 17:05:06
961人 分享

Autodesk AI 技术

在工程建设行业的探索应用


欧特克软件(中国)有限公司

罗海涛  谌冰  李德桥 王申  李嘉熹







2022 年,住房和城乡建设部印发《“十四五”建筑业发展规划》明确指出,加快智能建造与新型建筑工业化协同发展,推广数字设计、智能生产和智能施工。近几年,人工智能(Artificial IntelligenceAI)已成为全社会备受关注的热点,发展速度迅猛。行业已经有专家提出了人工智能的发展速度已经比摩尔定律快 5–100 [1]。据 OpenAI 发布的报[2]显示,用于 AI 训练的计算处理能力,可能已经达到 3.5 个月甚至更短的时间会翻一倍。这些远远超出当今能力、越来越便宜、发展速度指数级增长的人工智能技术和其他正在兴起和扩散的数字化技术,是工程建设行业通过技术转型升级,构建发展新优势的新机遇和新挑战。










Autodesk AI 及愿景


欧特克软件(中国)有限公司(以下简称“欧特克”)对于 AI 的研究始于 2009 年,当年欧特克研究团队发表了题为《Physics–based Generative Design》的论文[3],探讨了基于物理的生成式技术的潜力。2017 年,欧特克发表了关于生成式人工智能的研究文章[4],证明了生成式人工智能在设计和制造行业中实际应用的可行性。2018 年,欧特克正式成立了人工智能实验室,开展人工智能和机器学习的基础和应用研究。到目前为止,欧特克研究团队已经发表了 50 多篇关于人工智能相关发现的同行评审学术论文,使欧特克人工智能实验室成为世界领先的 3D 几何和设计的人工智能研究机构。


在 2023 年 11 月举办的 AUAutodesk University)大会上,欧特克发布了 Autodesk AI(欧特克人工智能),以增强用户创造性探索和解决问题的能力,实现重复性任务的自动化,从而最大限度地减少错误并节省资源;分析复杂的项目数据,提供预测性业务洞察。Autodesk AI 分成自动化 AI、分析AI以及增强 AI 三种类型,在欧特克解决方案的多个产品中有所体现,如图 所示。未来,欧特克会推出更多的 AI 功能以使应用场景更加完善,而更丰富的人工智能技术能力,会在 APSAutodesk Platform Services,原称 Autodesk Forge)以及基于 APS 的 Forma 上进行部署。


image.png

图 1 Autodesk AI 及其目前对应的软件产品


工程建设行业不同参建单位在不同的项目阶段,基于不同业务场景会产生各类数据,但受限于目前的技术,这些数据被限制在不同的软硬件和不同的文件格式中,即使目前有一些数据交换的标准,但仍然事倍功半,存在数据不准确、不完整、不能获取、不一致与不及时等问题。


欧特克的愿景是帮助项目相关方,实现从设计至建造交付的一体化全流程。通过互联开放的技术和数据的架构,打造一个脱离特定软件、与文件格式无关的从设计到建造实现的元数据级别平台。这些数据具备丰富的颗粒度,数据的管理可以通过代码管理的方式实现,第三方开发伙伴可以通过颗粒化数据集成到自己的方案中。工作过程中的变更,将可以快捷地传递到其他环节,减少文件壁垒,提高数据使用和分析的效率。在不同行业中、流程中进行无缝传递、变更、追踪,甚至可将自己的模型云信息化,以颗粒化模式与 APS 数据进行互联,使得行业企业将以较低的技术门槛和成本,赋能企业管理和技术人员根据丰富的业务流程、业务逻辑、业务场景和业务角色,重组需求与数据的链接,定制出企业能同时满足政府、甲方、总包、分包、运维等,财务、采购、管理、技术等多方要求的数字化交付平台。


所以,欧特克基于最新架构研发了覆盖三大行业的 Design&Make 一体化数据平台,如图 所示。该平台包括面向传媒娱乐行业的 Flow、面向制造业的 Fusion 和面向工程建设行业的 Forma,提供多元的技术服务,包括实现 AI 设计自动化、数据管理、协作、数据分析及可视化,仿真与加工制造、扩展现实 XRVRARMR 等)、数字孪生、SaaS 服务集成,可以让第三方基于 Design&Make 设计与建造的数据大模型、模块化服务和对应接口的架构,创建和部署自己的 AI/ 机器学习解决方案。类似 ChatGPT 最新的技术发布成果,让非专业人士定制自己想要的 GPT


image.png

图 2 Autodesk Design&Make 的一体化数据平台






增强 AI


设计互动与协作应用探索


该应用平台通过衍生式设计探索设计师与 AI 协作,以及设计师之间协作的新模式,完成未来社区的规划,类似于搭建乐高积木完成城市级别的规划设计和建设。该平台为客户提供了三种不同的角色,分别是生态专家、开发商和市长,每个角色都有其独特的板块和目标。比如,生态专家的目标为创造绿色生态环境,开发商的目标为提高城市密度,市长的目标为打造便捷的公共服务以及入口,平台界面如图 所示。


image.png

图 设计互动与协作 AI 应用


该平台主要特点包括以下四方面:一是增强他人的能力以提升协作效率,如不同角色可以查看其他角色规划的方案;二是增强设计师间的相互协作并与 AI 互动,AI 在后台工作,根据用户的操作提供建议;三是使用指标叠加来实时查看设计方案的执行情况,如光照分析、碳足迹等、密度等;四是在设计方案完成后,可以通过不同维度和指标来综合评价方案。


该平台背后是 AI 根据前端设计在后台持续优化,设计师使用自组织映射在前端可视化设计空间,AI 支撑的设计建议系统在后台持续优化,基于 AI 实现设计方案、设计空间可视化和用户设计轨迹可视化。


快速概念设计与验证应用探索


该应用程序为欧特克研究团队与某客户合作开发的人工智能解决方案,主要是通过 AI 辅助进行建筑体量及平面设计,可让建筑师插入建筑物的基本参数并提供少量的指示,就可估算出体积,并对室内布局进行程序化的规划。


其技术路线如图 所示,主要利用体素图这种新的 3D 表达数据集,并设计了一个跨模态的图形神经网络,也就是将计划神经网络(Program Graph)与表示设计空间的体素神经网络(Voxel)连接,再基于对专家系统的学习,增加一个判别网络(Discriminator),这就具备生成式对抗网络的条件。


image.png

图 技术路线图


通过生成式对抗网络,打磨生成的体素模型,最后得到类似 ChatGPT 的效果。设计师输入设计目标或条件,AI 通过计划神经网络加体素神经网络,生成体素模型并用鉴别器进行不断优化。如图 所示,左边计划神经网络代表的大厅、办公室、会议室、卫生间、楼梯间等建筑设计功能需求,右边是 AI 生成的体素模型,设计师可以在任何步骤进行干预,弥合 Building–GAN 和人类建筑师之间的差距。


image.png

图 生成式对抗网络


完成建筑体量设计后,进一步关注建筑平面的生成,根据计划图(气泡图)生成平面并进行大量训练,比较生成的平面布局之间的优劣。同时,可以采用基于语义的设计(图 6),对自然语言和结构化的自然语言的处理,适合有很多建筑规范要求和限制的平面设计场景。

image.png

图 基于语义的平面设计


基于目标和结果驱动的设计流程,由 AI 自动给出设计选项并可以循环优化,AI 在极短的时间内极大提升方案优化的效率,从而节省时间。


除了 AI 辅助建筑体量及平面设计,欧特克还研究探索了基于 AI 实现结构、机电及桥梁等流域的方案规划及优化设计。






分析 AI


Autodesk Forma


2023 年 月 日,欧特克在全球范围内发布 Autodesk FormaForma 是一个通过云计算和人工智能技术提供城市和建筑地块规划、建筑方案设计和即时分析的软件产品,为城市化和可持续发展提供数据驱动的设计和评估能力,其主要功能及特点如图 所示。

image.png

图 7 Autodesk Forma 主要功能及特点


Forma 可辅助设计师进行即时的规划建模,可以实时评估方案的各项设计指标、工程建成后的租售面积、未来建造运营的成本估算,以及地块的平面布局和建筑物的三维体量的可视化效果。同时,可以根据早期规划,将建筑物模型结合户型、容积率、地形、光照、噪音、密度、风向、视线、碳排放等因素进行实时模拟分析,辅助设计师设计出更合理、优秀的设计方案。


由于 Autodesk Forma 是基于云计算的,因此每个分析的计算都可以同步完成,从而释放计算机上的资源;显著减少分析等待时间,将反馈周期从几天(使用顾问和他的软件)缩短到几分钟。


Forma 基于 AI 可实现地块布局的自动生成,根据地块的边界条件探索不同设计方案,生成对应指标数据,用作多项分析及与其他设计平台实现数据互联。Forma 采用无文件存储,可与 Revit 数据互通,基于浏览器随时随地开展设计协作。此外,Forma 与 Rhino 可实现同步联动创建方案模型,利用 Rhino 创建更富细节的模型并同时使用 Forma 进行即时性能分析。


Midjourney 和 Stable Diffusion 等 AI 绘图软件可根据文字生成图像。同样,Forma 已发布 AI 渲染插件 Veras for Autodesk Forma,可以实现基于 Forma 设计成果的 AI 效果图渲染。


Autodesk InfoDrainage


Autodesk InfoDrainage 是排水系统的设计和分析软件,可用于可持续排水系统(SuDS)、绿色基础设施和传统排水系统的规划、初步设计及详细设计。其中,在加速洪水风险评估领域,欧特克推出了内置于 InfoDrainage 的开创性功能——基于机器学习的洪水评估工具。利用此工具可大幅提高洪水评估工作中的速度、稳定性、适应性和交互性,简化工作流程。


传统的洪水评估通常涉及复杂的模拟,计算量大、耗时长。新机器学习工具利用先进的算法解决了这个问题,该算法可以快速分析整个排水方案的水深,在短时间内获得快速而准确的洪水地图。例如,排水设计师调整了池塘的位置,洪水地图会快速进行更新,几乎实时地反映池塘位置的调整对整个排水方案带来的改变。借助这个工具,可以使得排水设计更加智能、反应更快、效率更高。






自动化 AI


PDF 到 BIM


工程建设行业中的设计单位、施工单位及业主单位积累了大量纸质或 PDF 文档,大量的数据被限制在 PDF 文档中,欧特克研究团队利用 Autodesk Dynamo 作为原型设计工具探索 PDF 到 BIM 的可行性,探索通过 AI 技术实现 PDF 图纸到 BIM 模型的转变,从而能够为 Revit 用户增加真正价值。例如,从 PDF 文档平面图中进行特征提取,识别出门、窗、墙等对象,从而实现从 2D PDF 自动生成 3D BIM 模型的目的,如图 所示。

image.png

图 8 PDF 到 BIM 研究探索


点云扫描到 BIM


目前,点云扫描和倾斜摄影在工程建设行业中应用日益广泛,但从原始点云及照片中提取对象特征基本需要其他软件或手动进行处理,如果可以基于原始点云或照片文件提取基础设施和建筑特征可以大幅提高设计、施工效率。Autodesk ReCap Pro 为现实捕捉和三维扫描软件,具有各种预处理功能,用于处理 Autodesk 各种产品中的点云数据,并创建能增强与欧特克产品兼容性的数据,从而可以轻松处理设计项目中的点云数据段。


在 ReCap Pro2023.1 及后续版本中,更新了通过提供高效的预处理分割功能。通过此更新,用户可以自动将地面点和非地面点分开,提取既有道路特征,并可在 Civil 3D 中作为要素线进行使用。这减少了数据大小并提供了高效设计过程所需的数据。


未来,欧特克将在 ReCap Pro 产品中整合更多的 AI/ 机器学习技术,从而实现更多场景的特征提取。例如,从点云扫描到 BIM,通过机器学习技术,读取点云对象的特征,进行自动分类和智能分段,提取墙、柱、门、窗等要素,将点云转换为原生 BIM 模型,以快速跟踪改造项目,如图 所示。

image.png

图 点云扫描到 BIM 研究探索


BIM 聊天 AI——Otto AI


欧特克研究团队正在研发 BIM 聊天机器人——Otto AI,基于对 Revit 等数据格式的解构,通过类似于 ChatGPT 问答的方式可以提供不同场景、不同团队所需的信息,如图 10 所示。目前,Otto AI 提供了设计主管、造价主管、业主三种角色。

image.png

图 10 Otto AI 界面


设计主管:可验证设计模型的合规性,如输入“显示所有未设置防火等级要求的门”,Otto AI 可以通过表格、列表、二维视图和三维视图等方式显示结果,并可以追问是谁设计创建了这些门,将结果以 Excel 文件通过发送邮件给相关设计师进行修改工作。


造价主管:可提取模型的某个类型的清单类目数据,如通过 Otto AI 可创建该项目的门窗规格表,并导出成 Excel 文件。


业主:可提取业主关心的相关信息,如提取项目中可出租的办公空间的面积数据和可能获得的收入信息。






实践案例


从 2019 年开始,欧特克对美国的模块化预制住房供应商 Factory_OS 进行了两次战略投资。欧特克正在积极致力于通过自动化和人工智能创建更高效的建筑流程,从而减少时间、投资、材料和碳排放等。例如,基于 Factory_OS 的模块化产品体系和制造工艺,利用欧特克的软件和技术,实现设计与制造的融合,打造出设计、制造、运营一体化的全过程工业化体系。


项目概况


菲尼克斯项目(图 11)位于美国加利福尼亚州。1989 年,菲尼克斯钢铁厂搬迁,原建筑和设备被拆除,留下了一个 2.02 公顷的混凝土平地。近 30 年来,尽管该地区人口不断增长,建筑成本不断增加,住房危机也变得更加紧迫,但该地点一直处于空置状态。欧特克与 Factory_OS 团队将空地变身为“菲尼克斯”The Phoenix),一个由 316 个经济实惠和可持续的住宅单元组成的综合住宅区。

image.png

图 11 菲尼克斯项目


AI 辅助设计减少成本并改善宜居性


使用 Autodesk Forma 进行前期设计,快速探索满足复杂项目目标的大量设计方案。例如,在建筑物上增加一层楼、将结构的位置向北或向南移动、将游乐场或绿地从开发项目的边缘转移到中心等每次方案的改变,Forma 均可实时评价不同方案的成本、碳排放和宜居性等指标,图 12 为公路对建筑噪音的分析。

image.png

图 12 利用 Forma 对高速公路噪音影响进行分析


Forma 具有较强的开放性,用户可基于 API 创造本地部署的插件,利用 Forma 的人工智能相关算法,加上客户的定制化数据和设计目标要求,形成了属于用户自己的人工智能应用。在该项目中,根据用户输入,自动化生成基于 Factory_OS 的标准单元户型的单体模型,包含外立面、内部隔墙与平面图,切换查看户型组合、碳排放、租售收入等指标,并快速专注于最大限度地提高预期结果的设计,通过使用欧特克工具和新的工作流程,将前期设计周期由两周缩短至 个小时。


新材料使建筑物成为负碳


为了尽可能减少幕墙的碳排放,项目团队通过玉米秸秆等农作物残渣与结合菌丝体进行有机发酵,经过 40 天在模具中发酵,然后高温杀菌脱模,形成新型的幕墙材料,如图 13 所示。该幕墙材料符合防火、防水、保温等性能要求,而且能够主动吸收大气中的二氧化碳,生产成本比传统幕墙更低,目前已经具备了规模化生产的条件。

图 13 负碳幕墙材料制作过程


该项目的建设成本、时间和碳足迹仅为旧金山湾区典型多户建筑的一半,不仅实现了高质量项目的高效交付,而且积累了大量可落地的探索经验。项目团队研究并验证了结果驱动的工作流程,完成了负碳建筑材料的成功应用,并计划在未来将该成功经验拓展至更多、更丰富的建筑类型中。






总结与展望


欧特克将 Autodesk AI 定位为 Autodesk Design&Make 一体化数据平台的顾问,赋能设计与建造。未来,欧特克将会不断更新 AI 领域的研究,为用户更快地提供更多、更丰富反馈和选择;利用自动化代替重复繁琐的工作任务,减少工程各阶段的错误,提升效率,解放用户的时间和精力去做更有价值、更有创意的任务;帮助用户打开想象力空间,让用户变得更加有创意。同时,欧特克极度尊重用户的数据权利,在 AI 时代建立与用户之间的信任,保有对 AI 技术的可控,符合法律和道德要求。


参考文献 


[1] Hernandez D,Brown T B.Measuring the Algorithmic Efficiency of Neural Networks.2020[2024–02–19].DOI:10.48550/arXiv.2005.04305.

[2] Miller E R.Pandora's Can of Worms:A Year of Generative AI in Higher Education[J].Portal:Libraries and the Academy,2024,24(1):21–34.

[3] Attar,Ramtin,Robert Aish,Jos Stam,Duncan R Brinsmead,Alex Tessier,Michael Glueck and Azam Khan.“PHYSICS–BASED GENERATIVE DESIGN.” (2009).

[4] Umetani N.Exploring generative 3D shapes using autoencoder networks[C]//Siggraph Asia Technical Briefs.ACM,2017.DOI:10.1145/3145749.3145758.


转载请注明来源本文地址:https://www.tuituisoft/blog/5130.html

上一篇:

第十届全国BIM学术会议征文通知

下一篇:

厦门市住房和建设局关于开展2024年度工程建设全生命周期建筑信息模型(BIM)技术应用试点工作的通知